Amicus Curious – Gelbach’s Foray into Lipitor Litigation

Professor Schauer’s discussion of statistical significance, covered in my last post,[1] is curious for its disclaimer that “there is no claim here that measures of statistical significance map easily onto measures of the burden of proof.” Having made the disclaimer, Schauer proceeds to falls into the transposition fallacy, which contradicts his disclaimer, and, generally speaking, is not a good thing for a law professor eager to advance the understanding of “The Proof,” to do.

Perhaps more curious than Schauer’s error is his citation support for his disclaimer.[2] The cited paper by Jonah B. Gelbach is one of several of Gelbach’s papers that advances the claim that the p-value does indeed map onto posterior probability and the burden of proof. Gelbach’s claim has also been the center piece in his role as an advocate in support of plaintiffs in the Lipitor (atorvastatin) multi-district litigation (MDL) over claims that ingestion of atorvastatin causes diabetes mellitus.

Gelbach’s intervention as plaintiffs’ amicus is peculiar on many fronts. At the time of the Lipitor litigation, Sonal Singh was an epidemiologist and Assistant Professor of Medicine, at the Johns Hopkins University. The MDL trial court initially held that Singh’s proffered testimony was inadmissible because of his failure to consider daily dose.[3] In a second attempt, Singh offered an opinion for 10 mg daily dose of atorvastatin, based largely upon the results of a clinical trial known as ASCOT-LLA.[4]

The ASCOT-LLA trial randomized 19,342 participants with hypertension and at least three other cardiovascular risk factors to two different anti-hypertensive medications. A subgroup with total cholesterol levels less than or equal to 6.5 mmol./l. were randomized to either daily 10 mg. atorvastatin or placebo.  The investigators planned to follow up for five years, but they stopped after 3.3 years because of clear benefit on the primary composite end point of non-fatal myocardial infarction and fatal coronary heart disease. At the time of stopping, there were 100 events of the primary pre-specified outcome in the atorvastatin group, compared with 154 events in the placebo group (hazard ratio 0.64 [95% CI 0.50 – 0.83], p = 0.0005).

The atorvastatin component of ASCOT-LLA had, in addition to its primary pre-specified outcome, seven secondary end points, and seven tertiary end points.  The emergence of diabetes mellitus in this trial population, which clearly was at high risk of developing diabetes, was one of the tertiary end points. Primary, secondary, and tertiary end points were reported in ASCOT-LLA without adjustment for the obvious multiple comparisons. In the treatment group, 3.0% developed diabetes over the course of the trial, whereas 2.6% developed diabetes in the placebo group. The unadjusted hazard ratio was 1.15 (0.91 – 1.44), p = 0.2493.[5] Given the 15 trial end points, an adjusted p-value for this particular hazard ratio, for diabetes, might well exceed 0.5, and even approach 1.0.

On this record, Dr. Singh honestly acknowledged that statistical significance was important, and that the diabetes finding in ASCOT-LLA might have been the result of low statistical power or of no association at all. Based upon the trial data alone, he testified that “one can neither confirm nor deny that atorvastatin 10 mg is associated with significantly increased risk of type 2 diabetes.”[6] The trial court excluded Dr. Singh’s 10mg/day causal opinion, but admitted his 80mg/day opinion. On appeal, the Fourth Circuit affirmed the MDL district court’s rulings.[7]

Jonah Gelbach is a professor of law at the University of California at Berkeley. He attended Yale Law School, and received his doctorate in economics from MIT.

Professor Gelbach entered the Lipitor fray to present a single issue: whether statistical significance at conventionally demanding levels such as 5 percent is an appropriate basis for excluding expert testimony based on statistical evidence from a single study that did not achieve statistical significance.

Professor Gelbach is no stranger to antic proposals.[8] As amicus curious in the Lipitor litigation, Gelbach asserts that plaintiffs’ expert witness, Dr. Singh, was wrong in his testimony about not being able to confirm the ASCOT-LLA association because he, Gelbach, could confirm the association.[9] Ultimately, the Fourth Circuit did not discuss Gelbach’s contentions, which is not surprising considering that the asserted arguments and alleged factual considerations were not only dehors the record, but in contradiction of the record.

Gelbach’s curious claim is that any time a risk ratio, for an exposure and an outcome of interest, is greater than 1.0, with a p-value < 0.5,[10] the evidence should be not only admissible, but sufficient to support a conclusion of causation. Gelbach states his claim in the context of discussing a single randomized controlled trial (ASCOT-LLA), but his broad pronouncements are carelessly framed such that others may take them to apply to a single observational study, with its greater threats to internal validity.

Contra Kumho Tire

To get to his conclusion, Gelbach attempts to remove the constraints of traditional standards of significance probability. Kumho Tire teaches that expert witnesses must “employ[] in the courtroom the same level of intellectual rigor that characterizes the practice of an expert in the relevant field.”[11] For Gelbach, this “eminently reasonable admonition” does not impose any constraints on statistical inference in the courtroom. Statistical significance at traditional levels (p < 0.05) is for elitist scholarly work, not for the “practical” rent-seeking work of the tort bar. According to Gelbach, the inflation of the significance level ten-fold to p < 0.5 is merely a matter of “weight” and not admissibility of any challenged opinion testimony.

Likelihood Ratios and Posterior Probabilities

Gelbach maintains that any evidence that has a likelihood ratio (LR > 1) greater than one is relevant, and should be admissible under Federal Rule of Evidence 401.[12] This argument ignores the other operative Federal Rules of Evidence, namely 702 and 703, which impose additional criteria of admissibility for expert witness opinion testimony.

With respect to variance and random error, Gelbach tells us that any evidence that generates a LR > 1, should be admitted when “the statistical evidence is statistically significant below the 50 percent level, which will be true when the p-value is less than 0.5.”[13]

At times, Gelbach seems to be discussing the admissibility of the ASCOT-LLA study itself, and not the proffered opinion testimony of Dr. Singh. The study itself would not be admissible, although it is clearly the sort of hearsay an expert witness in the field may consider. If Dr. Singh were to have reframed and recalculated the statistical comparisons, then the Rule 703 requirement of “reasonable reliance” by scientists in the field of interest may not have been satisfied.

Gelbach also generates a posterior probability (0.77), which is based upon his calculations from data in the ASCOT-LLA trial, and not the posterior probability of Dr. Singh’s opinion. The posterior probability, as calculated, is problematic on many fronts.

Gelbach does not present his calculations – for the sake of brevity he says – but he tells us that the ASCOT-LLA data yield a likelihood ratio of roughly 1.9, and a p-value of 0.126.[14] What the clinical trialists reported was a hazard ratio of 1.15, which is a weak association on most researchers’ scales, with a two-sided p-value of 0.25, which is five times higher than the usual 5 percent. Gelbach does not explain how or why his calculated p-value for the likelihood ratio is roughly half the unadjusted, two-sided p-value for the tertiary outcome from ASCOT-LLA.

As noted, the reported diabetes hazard ratio of 1.15 was a tertiary outcome for the ASCOT trial, one of 15 calculated by the trialists, with p-values unadjusted for multiple comparisons.  The failure to adjust is perhaps excusable in that some (but certainly not all) of the outcome variables are overlapping or correlated. A sophisticated reader would not be misled; only when someone like Gelbach attempts to manufacture an inflated posterior probability without accounting for the gross underestimate in variance is there an insult to statistical science. Gelbach’s recalculated p-value for his LR, if adjusted for the multiplicity of comparisons in this trial, would likely exceed 0.5, rendering all his arguments nugatory.

Using the statistics as presented by the published ASCOT-LLA trial to generate a posterior probability also ignores the potential biases (systematic errors) in data collection, the unadjusted hazard ratios, the potential for departures from random sampling, errors in administering the participant recruiting and inclusion process, and other errors in measurements, data collection, data cleaning, and reporting.

Gelbach correctly notes that there is nothing methodologically inappropriate in advocating likelihood ratios, but he is less than forthcoming in explaining that such ratios translate into a posterior probability only if he posits a prior probability of 0.5.[15] His pretense to having simply stated “mathematical facts” unravels when we consider his extreme, unrealistic, and unscientific assumptions.

The Problematic Prior

Gelbach’s glibly assumes that the starting point, the prior probability, for his analysis of Dr. Singh’s opinion is 50%. This is an old and common mistake,[16] long since debunked.[17] Gelbach’s assumption is part of an old controversy, which surfaced in early cases concerning disputed paternity. The assumption, however, is wrong legally and philosophically.

The law simply does not hand out 0.5 prior probability to both parties at the beginning of a trial. As Professor Jaffee noted almost 35 years ago:

“In the world of Anglo-American jurisprudence, every defendant, civil and criminal, is presumed not liable. So, every claim (civil or criminal) starts at ground zero (with no legal probability) and depends entirely upon proofs actually adduced.”[18]

Gelbach assumes that assigning “equal prior probability” to two adverse parties is fair, because the fact-finder would not start hearing evidence with any notion of which party’s contentions are correct. The 0.5/0.5 starting point, however, is neither fair nor is it the law.[19] The even odds prior is also not good science.

The defense is entitled to a presumption that it is not liable, and the plaintiff must start at zero.  Bayesians understand that this is the death knell of their beautiful model.  If the prior probability is zero, then Bayes’ Theorem tells us mathematically that no evidence, no matter how large a likelihood ratio, can move the prior probability of zero towards one. Bayes’ theorem may be a correct statement about inverse probabilities, but still be an inadequate or inaccurate model for how factfinders do, or should, reason in determining the ultimate facts of a case.

We can see how unrealistic and unfair Gelbach’s implied prior probability is if we visualize the proof process as a football field.  To win, plaintiffs do not need to score a touchdown; they need only cross the mid-field 50-yard line. Rather than making plaintiffs start at the zero-yard line, however, Gelbach would put them right on the 50-yard line. Since one toe over the mid-field line is victory, the plaintiff is spotted 99.99+% of its burden of having to present evidence to build up 50% probability. Instead, plaintiffs are allowed to scoot from the zero yard line right up claiming success, where even the slightest breeze might give them winning cases. Somehow, in the model, plaintiffs no longer have to present evidence to traverse the first half of the field.

The even odds starting point is completely unrealistic in terms of the events upon which the parties are wagering. The ASCOT-LLA study might have shown a protective association between atorvastatin and diabetes, or it might have shown no association at all, or it might have show a larger hazard ratio than measured in this particular sample. Recall that the confidence interval for hazard ratios for diabetes ran from 0.91 to 1.44. In other words, parameters from 0.91 (protective association) to 1.0 (no association), to 1.44 (harmful association) were all reasonably compatible with the observed statistic, based upon this one study’s data. The potential outcomes are not binary, which makes the even odds starting point inappropriate.[20]


[1]Schauer’s Long Footnote on Statistical Significance” (Aug. 21, 2022).

[2] Frederick Schauer, The Proof: Uses of Evidence in Law, Politics, and Everything Else 54-55 (2022) (citing Michelle M. Burtis, Jonah B. Gelbach, and Bruce H. Kobayashi, “Error Costs, Legal Standards of Proof, and Statistical Significance,” 25 Supreme Court Economic Rev. 1 (2017).

[3] In re Lipitor Mktg., Sales Practices & Prods. Liab. Litig., MDL No. 2:14–mn–02502–RMG, 2015 WL 6941132, at *1  (D.S.C. Oct. 22, 2015).

[4] Peter S. Sever, et al., “Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial,” 361 Lancet 1149 (2003). [cited here as ASCOT-LLA]

[5] ASCOT-LLA at 1153 & Table 3.

[6][6] In re Lipitor Mktg., Sales Practices & Prods. Liab. Litig., 174 F.Supp. 3d 911, 921 (D.S.C. 2016) (quoting Dr. Singh’s testimony).

[7] In re Lipitor Mktg., Sales Practices & Prods. Liab. Litig., 892 F.3d 624, 638-39 (2018) (affirming MDL trial court’s exclusion in part of Dr. Singh).

[8] SeeExpert Witness Mining – Antic Proposals for Reform” (Nov. 4, 2014).

[9] Brief for Amicus Curiae Jonah B. Gelbach in Support of Plaintiffs-Appellants, In re Lipitor Mktg., Sales Practices & Prods. Liab. Litig., 2017 WL 1628475 (April 28, 2017). [Cited as Gelbach]

[10] Gelbach at *2.

[11] Kumho Tire Co. v. Carmichael, 526 U.S. 137, 152 (1999).

[12] Gelbach at *5.

[13] Gelbach at *2, *6.

[14] Gelbach at *15.

[15] Gelbach at *19-20.

[16] See Richard A. Posner, “An Economic Approach to the Law of Evidence,” 51 Stanford L. Rev. 1477, 1514 (1999) (asserting that the “unbiased fact-finder” should start hearing a case with even odds; “[I]deally we want the trier of fact to work from prior odds of 1 to 1 that the plaintiff or prosecutor has a meritorious case. A substantial departure from this position, in either direction, marks the trier of fact as biased.”).

[17] See, e.g., Richard D. Friedman, “A Presumption of Innocence, Not of Even Odds,” 52 Stan. L. Rev. 874 (2000). [Friedman]

[18] Leonard R. Jaffee, “Prior Probability – A Black Hole in the Mathematician’s View of the Sufficiency and Weight of Evidence,” 9 Cardozo L. Rev. 967, 986 (1988).

[19] Id. at p.994 & n.35.

[20] Friedman at 877.