TORTINI

For your delectation and delight, desultory dicta on the law of delicts.

Confounded by Confounding in Unexpected Places

December 12th, 2021

In assessing an association for causality, the starting point is “an association between two variables, perfectly clear-cut and beyond what we would care to attribute to the play of chance.”[1] In other words, before we even embark on consideration of Bradford Hill’s nine considerations, we should have ruled out chance, bias, and confounding as an explanation for the claimed association.[2]

Although confounding is sometimes considered as a type of systematic bias, its importance warrants its own category. Historically, courts have been rather careless in addressing confounding. The Supreme Court, in a case decided before Daubert and the statutory modifications to Rule 702, ignored the role of confounding in a multiple regression model used to support racial discrimination claims. In language that would be reprised many times to avoid and evade the epistemic demands of Rule 702, the Court held, in Bazemore, that the omission of variables in multiple regression models raises an issue that affects “the  analysis’ probativeness, not its admissibility.”[3]

When courts have not ignored confounding,[4] they have sidestepped its consideration by imparting magical abilities to confidence intervals to take care of problem posed by lurking variables.[5]

The advent of the Reference Manual on Scientific Manual allowed a ray of hope to shine on health effects litigation. Several important cases have been decided by judges who have taken note of the importance of assessing studies for confounding.[6] As a new, fourth edition of the Manual is being prepared, its editors and authors should not lose sight of the work that remains to be done.

The Third Edition of the Federal Judicial Center’s and the National Academies of Science, Engineering & Medicine’s Reference Manual on Scientific Evidence (RMSE3d 2011) addressed confounding in several chapters, not always consistently. The chapter on statistics defined “confounder” in terms of correlation between both the independent and dependent variables:

“[a] confounder is correlated with the independent variable and the dependent variable. An association between the dependent and independent variables in an observational study may not be causal, but may instead be due to confounding”[7]

The chapter on epidemiology, on the other hand, defined a confounder as a risk factor for both the exposure and disease outcome of interest:

“A factor that is both a risk factor for the disease and a factor associated with the exposure of interest. Confounding refers to a situation in which an association between an exposure and outcome is all or partly the result of a factor that affects the outcome but is unaffected by the exposure.”[8]

Unfortunately, the epidemiology chapter never defined “risk factor.” The term certainly seems much less neutral than a “correlated” variable, which lacks any suggestion of causality. Perhaps there is some implied help from the authors of the epidemiology chapter when they described a case of confounding by “known causal risk factors,” which suggests that some risk factors may not be causal.[9] To muck up the analysis, however, the epidemiology chapter went on to define “risk” as “[a] probability that an event will occur (e.g., that an individual will become ill or die within a stated period of time or by a certain age).”[10]

Both the statistics and the epidemiology chapters provide helpful examples of confounding and speak to the need for excluding confounding as the basis for an observed association. The statistics chapter, for instance, described confounding as a threat to “internal validity,”[11] and the need to inquire whether the adjustments in multivariate studies were “sensible and sufficient.”[12]

The epidemiology chapter in one passage instructed that when “an association is uncovered, further analysis should be conducted to assess whether the association is real or a result of sampling error, confounding, or bias.[13] Elsewhere in the same chapter, the precatory becomes mandatory.[14]

Legally Unexplored Source of Substantial Confounding

As the Reference Manual implies, attempting to control for confounding is not adequate.  The controlling must be carefully and sufficiently done. Under the heading of sufficiency and due care, there are epidemiologic studies that purport to control for confounding, but fail rather dramatically. The use of administrative databases, whether based upon national healthcare or insurance claims, has become a common place in chronic disease epidemiology. Their large size obviates many concerns about power to detect rare disease outcomes. Unfortunately, there is often a significant threat to the validity of such studies, which are based upon data sets that characterize patients as diabetic, hypertensive, obese, or smokers vel non. By dichotomizing what are continuous variables, the categorization extracts a significant price in multivariate models used in epidemiology.

Of course, physicians frequently create guidelines for normal versus abnormal, and these divisions or categories show up in medical records, in databases, and ultimately in epidemiologic studies. The actual measurements are not always available, and the use of a categorical variable may appear to simplify the statistical analysis of the dataset. Unfortunately, the results can be quite misleading. Consider the measurements of blood pressure in a study that is evaluating whether an exposure variable (such as medication use or environmental contaminant) is associated with an outcome such as cardiovascular or renal disease. Hypertension, if present, would clearly be a confounder, but the use of a categorical variable for hypertension would greatly undermine the validity of the study. If many of the study participants with hypertension had their condition well controlled by medication, then the categorical variable will dilute the adjustment for the role of hypertension in driving the association between the exposure and outcome variables of interest. Even if none of the hypertensive patients had good control, the reduction of all hypertension to a category, rather than a continuous measurement, is a path of the loss of information and the creation of bias.

Almost 40 years ago, Jacob Cohen showed that dichotomization of continuous variables results in a loss of power.[15] Twenty years later, Peter Austin showed in a Monte Carlo simulation that categorizing a continuous variable in a logistic regression results in inflating the rate of finding false positive associations.[16] The type I (false-positive) error rates increases with sample size, with increasing correlation between the confounding variable and outcome of interest, and the number of categories used for the continuous variables. Of course, the national databases often have huge sample sizes, which only serves to increase the bias from the use of categorical variables for confounding variables.

The late Douglas Altman, who did so much to steer the medical literature toward greater validity, warned that dichotomizing continuous variables was known to cause loss of information, statistical power, and reliability in medical research.[17]

In the field of pharmaco-epidemiology, the bias created by dichotomization of a continous variable is harmful from both the perspective of statistical estimation and hypothesis testing.[18] While readers are misled into believing that the study adjusts for important co-variates, the study will have lost information and power, with the result of presenting false-positive results that have the false-allure of a fully adjusted model. Indeed, this bias from inadequate control of confounding infects several pending pharmaceutical multi-district litigations.


Supreme Court

General Electric Co. v. Joiner, 522 U.S. 136, 145-46 (1997) (holding that an expert witness’s reliance on a study was misplaced when the subjects of the study “had been exposed to numerous potential carcinogens”)

First Circuit

Bricklayers & Trowel Trades Internat’l Pension Fund v. Credit Suisse Securities (USA) LLC, 752 F.3d 82, 89 (1st Cir. 2014) (affirming exclusion of expert witness who failed to account for confounding in event studies), aff’g 853 F. Supp. 2d 181, 188 (D. Mass. 2012)

Second Circuit

Wills v. Amerada Hess Corp., 379 F.3d 32, 50 (2d Cir. 2004) (holding expert witness’s specific causation opinion that plaintiff’s squamous cell carcinoma had been caused by polycyclic aromatic hydrocarbons was unreliable, when plaintiff had smoked and drunk alcohol)

Deutsch v. Novartis Pharms. Corp., 768 F.Supp. 2d 420, 432 (E.D.N.Y. 2011) (“When assessing the reliability of a epidemiologic study, a court must consider whether the study adequately accounted for “confounding factors.”)

Schwab v. Philip Morris USA, Inc., 449 F. Supp. 2d 992, 1199–1200 (E.D.N.Y. 2006), rev’d on other grounds, 522 F.3d 215 (2d Cir. 2008) (describing confounding in studies of low-tar cigarettes, where authors failed to account for confounding and assessing healthier life styles in users)

Third Circuit

In re Zoloft Prods. Liab. Litig., 858 F.3d 787, 793 (3d Cir. 2017) (affirming exclusion of causation expert witness)

Magistrini v. One Hour Martinizing Dry Cleaning, 180 F. Supp. 2d 584, 591 (D.N.J. 2002), aff’d, 68 Fed. Appx. 356 (3d Cir. 2003)(bias, confounding, and chance must be ruled out before an association  may be accepted as showing a causal association)

Soldo v. Sandoz Pharms. Corp., 244 F. Supp. 2d 434 (W.D.Pa. 2003) (excluding expert witnesses in Parlodel case; noting that causality assessments and case reports fail to account for confounding)

Wade-Greaux v. Whitehall Labs., Inc., 874 F. Supp. 1441 (D.V.I. 1994) (unanswered questions about confounding required summary judgment  against plaintiff in Primatene Mist birth defects case)

Fifth Circuit

Knight v. Kirby Inland Marine, Inc., 482 F.3d 347, 353 (5th Cir. 2007) (affirming exclusion of expert witnesses) (“Of all the organic solvents the study controlled for, it could not determine which led to an increased risk of cancer …. The study does not provide a reliable basis for the opinion that the types of chemicals appellants were exposed to could cause their particular injuries in the general population.”)

Burst v. Shell Oil Co., C. A. No. 14–109, 2015 WL 3755953, *7 (E.D. La. June 16, 2015) (excluding expert witness causation opinion that failed to account for other confounding exposures that could have accounted for the putative association), aff’d, 650 F. App’x 170 (5th Cir. 2016)

LeBlanc v. Chevron USA, Inc., 513 F. Supp. 2d 641, 648-50 (E.D. La. 2007) (excluding expert witness testimony that purported to show causality between plaintiff’s benzene ezposure and myelofibrosis), vacated, 275 Fed. App’x 319 (5th Cir. 2008) (remanding case for consideration of new government report on health effects of benzene)

Castellow v. Chevron USA, 97 F. Supp. 2d 780 (S.D. Tex. 2000) (discussing confounding in passing; excluding expert witness causation opinion in gasoline exposure AML case)

Kelley v. American Heyer-Schulte Corp., 957 F. Supp. 873 (W.D. Tex. 1997) (confounding in breast implant studies)

Sixth Circuit

Pluck v. BP Oil Pipeline Co., 640 F.3d 671 (6th Cir. 2011) (affirming exclusion of specific causation opinion that failed to rule out confounding factors)

Nelson v. Tennessee Gas Pipeline Co., 243 F.3d 244, 252-54 (6th Cir. 2001) (rewrite: expert’s failure to account for confounding factors in cohort study of alleged PCB exposures rendered his opinion unreliable)

Turpin v. Merrell Dow Pharms., Inc., 959 F. 2d 1349, 1355 -57 (6th Cir. 1992) (discussing failure of some studies to evaluate confounding)

Adams v. Cooper Indus. Inc., 2007 WL 2219212, 2007 U.S. Dist. LEXIS 55131 (E.D. Ky. 2007) (differential diagnosis includes ruling out confounding causes of plaintiffs’ disease).

Seventh Circuit

People Who Care v. Rockford Bd. of Educ., 111 F.3d 528, 537–38 (7th Cir. 1997) (noting importance of considering role of confounding variables in educational achievement);

Caraker v. Sandoz Pharms. Corp., 188 F. Supp. 2d 1026, 1032, 1036 (S.D. Ill 2001) (noting that “the number of dechallenge/rechallenge reports is too scant to reliably screen out other causes or confounders”)

Eighth Circuit

Penney v. Praxair, Inc., 116 F.3d 330, 333-334 (8th Cir. 1997) (affirming exclusion of expert witness who failed to account of the confounding effects of age, medications, and medical history in interpreting PET scans)

Marmo v. Tyson Fresh Meats, Inc., 457 F.3d 748, 758 (8th Cir. 2006) (affirming exclusion of specific causation expert witness opinion)

Ninth Circuit

Coleman v. Quaker Oats Co., 232 F.3d 1271, 1283 (9th Cir. 2000) (p-value of “3 in 100 billion” was not probative of age discrimination when “Quaker never contend[ed] that the disparity occurred by chance, just that it did not occur for discriminatory reasons. When other pertinent variables were factored in, the statistical disparity diminished and finally disappeared.”)

In re Viagra & Cialis Prods. Liab. Litig., 424 F.Supp. 3d 781 (N.D. Cal. 2020) (excluding causation opinion on grounds including failure to account properly for confounding)

Avila v. Willits Envt’l Remediation Trust, 2009 WL 1813125, 2009 U.S. Dist. LEXIS 67981 (N.D. Cal. 2009) (excluding expert witness opinion that failed to rule out confounding factors of other sources of exposure or other causes of disease), aff’d in relevant part, 633 F.3d 828 (9th Cir. 2011)

In re Phenylpropanolamine Prods. Liab. Litig., 289 F.Supp.2d 1230 (W.D.Wash. 2003) (ignoring study validity in a litigation arising almost exclusively from a single observational study that had multiple internal and external validity problems; relegating assessment of confounding to cross-examination)

In re Bextra and Celebrex Marketing Sales Practice, 524 F. Supp. 2d 1166, 1172 – 73 (N.D. Calif. 2007) (discussing invalidity caused by confounding in epidemiologic studies)

In re Silicone Gel Breast Implants Products Liab. Lit., 318 F.Supp. 2d 879, 893 (C.D.Cal. 2004) (observing that controlling for potential confounding variables is required, among other findings, before accepting epidemiologic studies as demonstrating causation).

Henricksen v. ConocoPhillips Co., 605 F. Supp. 2d 1142 (E.D. Wash. 2009) (noting that confounding must be ruled out)

Valentine v. Pioneer Chlor Alkali Co., Inc., 921 F. Supp. 666 (D. Nev. 1996) (excluding plaintiffs’ expert witnesses, including Dr. Kilburn, for reliance upon study that failed to control for confounding)

Tenth Circuit

Hollander v. Sandoz Pharms. Corp., 289 F.3d 1193, 1213 (10th Cir. 2002) (noting importance of accounting for confounding variables in causation of stroke)

In re Breast Implant Litig., 11 F. Supp. 2d 1217, 1233 (D. Colo. 1998) (alternative explanations, such confounding, should be ruled out before accepting causal claims).

Eleventh Circuit

In re Abilify (Aripiprazole) Prods. Liab. Litig., 299 F.Supp. 3d 1291 (N.D.Fla. 2018) (discussing confounding in studies but credulously accepting challenged explanations from David Madigan) (citing Bazemore, a pre-Daubert, decision that did not address a Rule 702 challenge to opinion testimony)

District of Columbia Circuit

American Farm Bureau Fed’n v. EPA, 559 F.3d 512 (D.C. Cir. 2009) (noting that data relied upon in setting particulate matter standards addressing visibility should avoid the confounding effects of humidity)

STATES

Delaware

In re Asbestos Litig., 911 A.2d 1176 (New Castle Cty., Del. Super. 2006) (discussing confounding; denying motion to exclude plaintiffs’ expert witnesses’ chrysotile causation opinions)

Minnesota

Goeb v. Tharaldson, 615 N.W.2d 800, 808, 815 (Minn. 2000) (affirming exclusion of Drs. Janette Sherman and Kaye Kilburn, in Dursban case, in part because of expert witnesses’ failures to consider confounding adequately).

New Jersey

In re Accutane Litig., 234 N.J. 340, 191 A.3d 560 (2018) (affirming exclusion of plaintiffs’ expert witnesses’ causation opinions; deprecating reliance upon studies not controlled for confounding)

In re Proportionality Review Project (II), 757 A.2d 168 (N.J. 2000) (noting the importance of assessing the role of confounders in capital sentences)

Grassis v. Johns-Manville Corp., 591 A.2d 671, 675 (N.J. Super. Ct. App. Div. 1991) (discussing the possibility that confounders may lead to an erroneous inference of a causal relationship)

Pennsylvania

Porter v. SmithKline Beecham Corp., No. 3516 EDA 2015, 2017 WL 1902905 (Pa. Super. May 8, 2017) (affirming exclusion of expert witness causation opinions in Zoloft birth defects case; discussing the importance of excluding confounding)

Tennessee

McDaniel v. CSX Transportation, Inc., 955 S.W.2d 257 (Tenn. 1997) (affirming trial court’s refusal to exclude expert witness opinion that failed to account for confounding)


[1] Austin Bradford Hill, “The Environment and Disease: Association or Causation?” 58 Proc. Royal Soc’y Med. 295, 295 (1965) (emphasis added).

[2] See, e.g., David A. Grimes & Kenneth F. Schulz, “Bias and Causal Associations in Observational Research,” 359 The Lancet 248 (2002).

[3] Bazemore v. Friday, 478 U.S. 385, 400 (1986) (reversing Court of Appeal’s decision that would have disallowed a multiple regression analysis that omitted important variables). Buried in a footnote, the Court did note, however, that “[t]here may, of course, be some regressions so incomplete as to be inadmissible as irrelevant; but such was clearly not the case here.” Id. at 400 n.10. What the Court missed, of course, is that the regression may be so incomplete as to be unreliable or invalid. The invalidity of the regression in Bazemore does not appear to have been raised as an evidentiary issue under Rule 702. None of the briefs in the Supreme Court or the judicial opinions cited or discussed Rule 702.

[4]Confounding in the Courts” (Nov. 2, 2018).

[5] See, e.g., Brock v. Merrill Dow Pharmaceuticals, Inc., 874 F.2d 307, 311-12 (5th Cir. 1989) (“Fortunately, we do not have to resolve any of the above questions [as to bias and confounding], since the studies presented to us incorporate the possibility of these factors by the use of a confidence interval.”). This howler has been widely acknowledged in the scholarly literature. See David Kaye, David Bernstein, and Jennifer Mnookin, The New Wigmore – A Treatise on Evidence: Expert Evidence § 12.6.4, at 546 (2d ed. 2011); Michael O. Finkelstein, Basic Concepts of Probability and Statistics in the Law 86-87 (2009) (criticizing the blatantly incorrect interpretation of confidence intervals by the Brock court).

[6]On Praising Judicial Decisions – In re Viagra” (Feb. 8, 2021); See “Ruling Out Bias and Confounding Is Necessary to Evaluate Expert Witness Causation Opinions” (Oct. 28, 2018); “Rule 702 Requires Courts to Sort Out Confounding” (Oct. 31, 2018).

[7] David H. Kaye and David A. Freedman, “Reference Guide on Statistics,” in RMSE3d 211, 285 (3ed 2011). 

[8] Michael D. Green, D. Michal Freedman, and Leon Gordis, “Reference Guide on Epidemiology,” in RMSE3d 549, 621.

[9] Id. at 592.

[10] Id. at 627.

[11] Id. at 221.

[12] Id. at 222.

[13] Id. at 567-68 (emphasis added).

[14] Id. at 572 (describing chance, bias, and confounding, and noting that “[b]efore any inferences about causation are drawn from a study, the possibility of these phenomena must be examined”); id. at 511 n.22 (observing that “[c]onfounding factors must be carefully addressed”).

[15] Jacob Cohen, “The cost of dichotomization,” 7 Applied Psychol. Measurement 249 (1983).

[16] Peter C. Austin & Lawrence J. Brunner, “Inflation of the type I error rate when a continuous confounding variable is categorized in logistic regression analyses,” 23 Statist. Med. 1159 (2004).

[17] See, e.g., Douglas G. Altman & Patrick Royston, “The cost of dichotomising continuous variables,” 332 Brit. Med. J. 1080 (2006); Patrick Royston, Douglas G. Altman, and Willi Sauerbrei, “Dichotomizing continuous predictors in multiple regression: a bad idea,” 25 Stat. Med. 127 (2006). See also Robert C. MacCallum, Shaobo Zhang, Kristopher J. Preacher, and Derek D. Rucker, “On the Practice of Dichotomization of Quantitative Variables,” 7 Psychological Methods 19 (2002); David L. Streiner, “Breaking Up is Hard to Do: The Heartbreak of Dichotomizing Continuous Data,” 47 Can. J. Psychiatry 262 (2002); Henian Chen, Patricia Cohen, and Sophie Chen, “Biased odds ratios from dichotomization of age,” 26 Statist. Med. 3487 (2007); Carl van Walraven & Robert G. Hart, “Leave ‘em Alone – Why Continuous Variables Should Be Analyzed as Such,” 30 Neuroepidemiology 138 (2008); O. Naggara, J. Raymond, F. Guilbert, D. Roy, A. Weill, and Douglas G. Altman, “Analysis by Categorizing or Dichotomizing Continuous Variables Is Inadvisable,” 32 Am. J. Neuroradiol. 437 (Mar 2011); Neal V. Dawson & Robert Weiss, “Dichotomizing Continuous Variables in Statistical Analysis: A Practice to Avoid,” Med. Decision Making 225 (2012); Phillippa M Cumberland, Gabriela Czanner, Catey Bunce, Caroline J Doré, Nick Freemantle, and Marta García-Fiñana, “Ophthalmic statistics note: the perils of dichotomising continuous variables,” 98 Brit. J. Ophthalmol. 841 (2014).

[18] Valerii Fedorov, Frank Mannino1, and Rongmei Zhang, “Consequences of dichotomization,” 8 Pharmaceut. Statist. 50 (2009).